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Abstract: The non-interference three-dimensional refractive index (RI) tomography has at-
tracted extensive attention in the life science field for its simple system implementation and
robust imaging performance. However, the complexity inherent in the physical propagation
process poses significant challenges when the sample under study deviates from the weak
scattering approximation. Such conditions complicate the task of achieving global optimization
with conventional algorithms, rendering the reconstruction process both time-consuming and
potentially ineffective. To address such limitations, this paper proposes an untrained multi-slice
neural network (MSNN) with an optical structure, in which each layer has a clear corresponding
physical meaning according to the beam propagation model. The network does not require
pre-training and performs good generalization and can be recovered through the optimization of a
set of intensity images. Concurrently, MSNN can calibrate the intensity of different illumination
by learnable parameters, and the multiple backscattering effects have also been taken into
consideration by integrating a "scattering attenuation layer" between adjacent "RI" layers in the
MSNN. Both simulations and experiments have been conducted carefully to demonstrate the
effectiveness and feasibility of the proposed method. Experimental results reveal that MSNN
can enhance clarity with increased efficiency in RI tomography. The implementation of MSNN
introduces a novel paradigm for RI tomography.
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1. Introduction

Remarkable three-dimensional (3D) visualization of biological processes is of paramount
importance for biological research. This is particularly challenging due to the transparent or semi-
transparent characteristics of numerous biological cells. Direct microscopic observation often
results in a low imaging contrast, missing much information. For improving the imaging contrast
and signal-to-noise ratio (SNR) of 3D distributed bio-samples, fluorescence microscopy is one of
the most widespread solutions [1–4], and has inspired several representative super-resolution
methods, such as Stimulated emission depletion microscopy (STED) [5,6], Stochastic optical
reconstruction microscopy(STORM) [7,8], Photoactivation localization microscopy(PALM) [9],
et al. Combined with necessary mechanical position scanning techniques, confocal designs [10],
multi-photon microscopy [11] and light sheet microscopy [12] can be implemented, fluorescence
microscopy enables the achievement of high-resolution 3D imaging of typical biological samples,
with both high signal-to-noise ratio (SNR) and spatial resolution. Nevertheless, fluorescence
microscopy necessitates exogenous labeling. And since some cellular characteristics or structures
may not be detectable using fluorescence, it is unable to probe the total internal structure of
biological samples.

Unlike fluorescent labeling methods, phase imaging by measuring the change in the optical
path difference of light is another approach that can effectively observe the structure information
of transparent and semi-transparent samples. Combining with angularly-resolved measurements
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and tomography reconstruction algorithms, 3D refractive index (RI) imaging can be achieved,
termed optical projection tomography [13–15]. Although optical tomography can produce
high-quality 3D images, the interferometry-based method for obtaining phase distribution under
each angular projection is highly sensitive to environmental conditions and prone to speckle noise.
Therefore the corresponding system construction cost is high, and the system is less robust.

Besides interferometry, phase retrieval with intensity images utilizing optimization algorithms
is also a widely used phase imaging technique. Such methods are not affected by laser speckle
noise and are robust to environmental disturbances, so the implementation and operation costs
of the systems are also relatively low. Nevertheless, phase imaging from intensity images is
not trouble-free. The ability of an optimization algorithm to find a satisfactory global solution
depends on the inverse problem’s complexity, the physical constraints used, and the chosen initial
value. RI tomography from intensity images, referred to as intensity diffractive tomography
(IDT) [16–23], is a complex inverse problem involving a large number of unknown parameters
and complex multiple scattering physical processes. Conventional IDT approaches, whether
they utilize the multi-slice model in the space domain or Ewald’s diffractive sphere model in the
Fourier domain, have the problems of being seriously time-consuming, slow convergence, and
easy to fall into local minima traps [24].

In recent years, many researchers have been actively exploring appropriate deep-learning
methods to achieve better performance in computational imaging including tomography. While
deep learning has been demonstrated to improve the speed and quality of tomography across
various modalities [25–31], conventional deep learning approaches remain unsuitable for
certain measurement applications, especially RI tomography of biological samples. Since the
conventional deep learning methods are mostly data-driven schemes, the inferential capabilities
of the convolution neural networks (CNNs) are from the "experience" gleaned from huge datasets
[32–35]. However, constructing a comprehensive dataset for biological tomography remains a
significant challenge. Although a physics-based simulator has been proposed to generate training
datasets for CNNs in biological tomography, the results are still limited by the mismatch between
simulation and experimental data. [36]. Moreover, the accuracy of results from conventional
CNNs, when applied to completely novel samples, remains questionable. [37,38].

To address the aforementioned challenges, researchers have proposed the use of neural networks,
integrated with physical models, to enhance the accuracy of imaging. In 2020, Horstmeyer
Roarke proposed the deep prior diffraction tomography [39] which employs neural networks as
the phase retrieval algorithm and uses a light scattering model as the physical verification to
improve the authenticity of the imaging. Guohai Situ practiced a similar scheme in coherent
diffraction imaging [40] in the same year. In 2022, Ulugbek S. Kamilov proposed the deep
continuous artefact-free RI field, which uses the neural field network to implement phase retrieval.
The sparse representation capability of neural field networks significantly reduces memory usage
and addresses the issue of missing cones in intensity diffraction tomography [41]. However, these
physics-based methods still employ conventional neural network structures as inverse operation
networks. The optimization process essentially involves searching for the optimal inverse problem
model within the vast parameter space of CNNs, a process that remains time-consuming.

In this work, we remodel the structure of conventional neural networks [42] to incorporate
both the beam propagation model and the scattering model, as opposed to solely relying on
conventional architectures. The beam propagation method [43–46], dividing the RI of the sample
into layers, is adapted within the structure of our neural network [47–49]. The beam propagation
model imposes constraints on the backward gradient and helps verify the authenticity of the
imaging results. The neural network we propose, which incorporates an optical structure, is
designated as the multi-slice neural network(MSNN).

To enhance imaging quality, we incorporate dark field raw data into the optimization [50]. We
extend the MSNN connection for learnable parameters [51] to calibrate the intensity between
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different LEDs, reducing the requirements for acquisition hardware and the need for image
preprocessing.

The exceptional fitting capability of MSNN even offers the potential to take the higher-order
scattering within the sample into phase retrieval. We take into account the backscattering field as
predicted by the scattering model. The multiple backscattering effects have also been taken into
consideration by integrating a "scattering attenuation layer" between adjacent "RI" layers in the
MSNN. This approach ensures that our network architecture more accurately mirrors the actual
process of light field propagation within the sample. We demonstrate that the implementation of
adaptive recovery of backscatter intensity using MSNN during C. elegans imaging can enhance
the quality of the images.

2. Method

2.1. Principle of the multi-slice neural network (MSNN)

Multi-slice beam propagation method separates 3D objects into a series of thin layers, where
the light wave through the sample is modeled by sequential layer-to-layer propagation of the
light field. The structure of the beam propagation model is very similar to the hierarchical
structure of the Deep Neural Networks(DNNs). And there are many optimizers [52] for DNNs to
quickly converge to the global optimum. In MSNN, We model the mth layer of the 3D object
as Lm(r) = n(r, m∆z) − nmedia. Mathematically, the diffraction propagation in MSNN can be
recursively written as:

P(r,∆z) = exp(j2π∆z(nmedia
λ

2
− ∥u∥2)1/2) (1)

tm(r,∆z) = exp(j2π∆z
n(r, m∆z) − nmedia

λ
) (2)

Um+1(r) = tm(r,∆z) ·F−1{P(r,∆z)·F {Um(r)}} (3)

where P(r,∆z) denotes the angular spectrum diffraction equation that propagates a light field by
distance ∆z, r denotes the 2D spatial position vector, u denotes the 2D spatial frequency space
coordinates vector, tm(r,∆z) denotes the phase modulation by the mth layer, Um and Um+1 are
the input and output light field of mth layer in MSNN. The boundary condition to initialize the
recursively Eq. (3) is the incident plane wave illuminating the sample, U0(r) = exp(jkillur) where
killu is the illumination wave vector at a particular angle. The experiment system and the principle
of MSNN are shown in Fig. 1.

Simultaneously, based on the 1st Born approximation, the scattering model that suggests the
light field through the 3D sample including the incident field and scattered field stimulated by the
3D scattering potential V(r, z) = k2

0(n2
media − n2(r, z)). The total light field through the 3D sample

can be expressed as:
Utotal(r, z) = Uin(r, z) + U(born)

s (r, z) (4)

Uin(r, z) = F−1{P(r,∆z) ·F {Utotal(r, z − ∆z)}} (5)

U(born)
s (r, z) =

∭
G(r − r′,∆z)Utotal(r′, z − ∆z)V(r′, z)d3r′ (6)

U(born)
s (r, z) denotes the scattered field under the 1st Born approximation. The beam propagation

model and the 1st Born approximation scattering model both consider the propagation of the input
field according to the angular spectrum diffraction method, but they are different in the prediction
of the scattering field. And the previous work has verified that both models are effective for 3D
imaging of weakly scattered thick samples [44,53]. In scattering model, Eq. (6) suggests that
the superposition field of spherical waves computed by the Green function is actually the total
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Fig. 1. The principle of MSNN. (a)The optical system of the RI tomography. (b)The beam
propogation model with estimate of backscattering. The lighting mode can be selected array
lighting or spiral lighting. The bright-field and dark-field images are simulation captured
images of a cell phantom.(c) The backscattering of different layers in the sample is predicted
in MSNN with Learnable Intensity Attenuation Coefficient (LIAC). The inconsistency in
intensity of various incident plane waves is corrected by Learnable Intensity Compensation
Coefficient(LICC) in MSNN. (d) The structure of MSNN. After the optimization, we will
extract the internal parameters of the neural network as the RI reconstruction results of
the sample. (e) The reconstruction result of the head of a C.elegan. The image is a
two-dimensional projection of the reconstruction result on the x-y plane.

scattering field including the forward scattering field and backscattering field, and we proved that
when the layer is thin enough, the forward field and backscattering field can be approximate have
same distribution in phase but different in intensity. We transferred the conclusion to the beam
propagation model and got better imaging results in the experiments. In the MSNN, we divide the
3D RI of samples into slices, assuming that each slice is thin enough to disregard the scattering
within it. The scattering model suggests that the phases of the forward and backscattering fields
are identical [53] when the slices are extremely thin:

U(born)
s (r, z) = G̃(u,∆z)

∬
sinc(ℸ(u′) + ℸ(u))∆z)Ũn(u′)Ṽn(u − u′)∆zd2u′ (7)

U(born)
bs (r, z) = G̃(u,∆z)

∬
sinc(ℸ(u′) − ℸ(u))∆z)Ũn(u′)Ṽn(u − u′)∆zd2u′ (8)

ℸ(u) = (
√︃

nm
λ
− ||u| |2) (9)

where ∆z is the thickness of the slice, allowing us to approximate the sinc function to one. By
applying this conclusion to the beam propagation model, we can consider that the backscattering
field attenuates the forward scattering field, although the intensity of this attenuation remains
unknown. Based on the simulation experiment in Chen’s paper [53] (using a simulation cell
model with a scale and RI bandwidth similar to the C.elegans sample used in this paper, and
the cell model is more uniform and sparser than the C.elegans), A rough estimate would lead
to an intensity prediction difference of 0%-16% ( 0

1.8 − 0.08
0.5 ) in different areas of the image. We

believe that this may lead to model degradation in the later stages of optimization. So we employ
the beam propagation model to predict the backscattering field and attenuate the incident field
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in the layer of the forward propagation in MSNN, we set learnable parameters ωm to predict
the intensity of backscattering field to attenuate forward field, the parameters ωm which we
called Learnable Intensity Attenuation Coefficient(LIAC) are optimized by MSNN. The forward
propagation in MSNN can be expressed as:

Um+1(r) = tm(r,∆z) ·F−1{P(r,∆z) ·F {Um}}/ωm (10)

The exit electric-field, UM(r), accounts for the light field passing through the sample. When
the imaging system is focus at the center of the sample, we need to refocus the exit light field
UM(r) to the center of the sample, where M denotes the total layers of the model. The final light
field and intensity distributions at the image plane are:

Upredict(r) = F−1{C(u, k0) · P(r,−M∆z
2
) ·F {UM}} (11)

Ipredict(r) = |Upredict(r)|2 (12)

where C(u, k0) denotes the coherent transfer function of the system. The light field captured by
the objective Upredict(r) accounts for the accumulation of the diffraction and multiple-scattering
processes(including the backscattering) that occurred during optical propagation through the
(−M∆z

2
,

M∆z
2

) around the focal plane.

2.2. Adaptive intensity calibration between different input fields in MSNN

In practical experiments, to enhance lateral and axial resolution and improve the success rate of
3D imaging, we need to provide plane waves ki from various angles. When ki>NAobj, the camera
captures dark-field images which require longer exposure times to enhance the signal-to-noise
ratio. During the image capture process, we set distinct exposure times for different illumination
angles. However, the relationship between exposure time length and sensor responsiveness is
not strictly linear. Despite raw data preprocessing according to exposure times, this discrepancy
could potentially introduce complications in solving the inverse problem.

Furthermore, due to limitations in the accuracy of the experimental system, the intensity of
the high-order diffracted input light field (provides illumination for darkfield) - which is used
as an initial condition of MSNN - may be inaccurate. To address discrepancies in the response
gray value in raw data caused by varying sensor exposure time settings at different illumination
angles, and to compensate for the intensity of higher-order diffracted light, we introduce learnable
parameters γn for each illumination angle. Consequently, the incident wave can be expressed as
follows:

Un
0(r) = γn · exp(jkillur) (13)

We define γn as the Learnable Intensity Compensation Coefficient (LICC) for the nth incident
plane wave. In our model, LEDs in different positions each have independent coefficients. These
coefficients can be learned and optimized within the Multi-Slice Neural Network(MSNN) during
imaging. Consequently, the MSNN identifies the optimal set of LICCs (γ1 · · · , γn · · · , γN) for
the LEDs, thereby enhancing the 3D imaging process.

2.3. RI tomography with MSNN

MSNN is employed to solve the following optimization with an objective consisting of a
measurement loss L and regularizer R:

argmin{L(MSNN(killu), Igt(r)) + β · R(MSNN)} (14)

where L denotes the L1 loss. R denotes the regularization term. We use the 3D total variation
(TV) norm as the regularization loss within the MSNN. The parameter β is manually adjusted
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to optimize the strength of the regularization, with a larger punishment in the axial direction
typically yielding better results. For the MSNN updates, we employ the Adam optimizer [54],
which adaptively adjusts the learning rate based on raw data. This process for 3D Intensity-based
RI imaging with MSNN is summarized in Algorithm 1.

Algorithm 1. 3D intensity-based RI imaging with MSNN256
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Algorithm 1: 3D Intensity-based RI imaging with MSNN
1 Input:The illuminate killu of N LEDs, M layers of imaging axial size M∆z.
2 Data:Measured intensities {In

measure(r)}Nn=1.
3 Hyperparameters:The parameters of the microscope system, the step size of

optimization α, the TV regularization coefficient β, the learning rate of LIAC ωm and
LICC γn, max number of iteration I

4 Initialization:The RI in the layer of MSNN {Lm(r)}Mm=1 = 0.
5 Return:3D RI of the sample.
6 for i = 1 : I do
7 for n = 1 : N do
8 killu = kn, Igt(r) = In

measure(r)
9 U0(r) = γn · exp(jkillur)

10 for m = 1 : M do
11 Lm(r) ← mth layer of MSNN

12 tm(r,∆z) ← exp(j2π∆z
Lm(r)
λ
)

13 Um+1(r) ← tm(r,∆z) ·F−1{P(r,∆z) ·F {Um(r)}}/ωm
14 end
15 Ipredict(r) ← |UM(r)F−1{C(u, k0) · P(r,−M∆z

2
) ·F {UM}}|

16 Loss← L1(Ipredict(r), Igt(r))
17 Loss.autograd().backward() by optimizer Adam(α)
18 end
19 RI ← layers of MSNN
20 RIreg ← TV3D(RI, β)
21 MSNN← RIreg
22 end

optimize the strength of the regularization, with a larger punishment in the axial direction typically
yielding better results. For the MSNN updates, we employ the Adam optimizer [54], which
adaptively adjusts the learning rate based on raw data. This process for 3D Intensity-based RI
imaging with MSNN is summarized in Algorithm 1.

In addition, there are still some tricks that help us optimally configure the network structure
to accelerate tomographic reconstruction. For example, users can determine the number of
network layers, M, based on the system’s minimum axial resolution delta z and imaging depth Z.
Alternatively, the number of network layers, M, can be determined based on the minimum axial
resolution delta z corresponding to the lateral scale range of the sample. As mentioned in section
4.3 that follows. As for the selection of hyperparameters for MSNN, The optimal hyperparameter
(Generally, the adjustment is the learning rate for LICC) can be obtained by monitoring the first
few iterations or performing a small number of iterative reconstructions in a localized area.

During the optimization process, the number of iterations is influenced by the sample and
the settings of MSNN , including numbers of layer, imaging depth, and the internal multiple
scattering of sample. Generally speaking, users can opt to halt once the loss shows no significant
reduction, achieving satisfactory imaging quality in such cases.

3. Simulations

To assess its capability for quantitative 3D RI reconstruction, we initially create a pure phase
phantom composed of microspheres of varying radius. These microspheres have a RI of 1.59,

In addition, there are still some tricks that help us optimally configure the network structure
to accelerate tomographic reconstruction. For example, users can determine the number of
network layers, M, based on the system’s minimum axial resolution delta z and imaging depth Z.
Alternatively, the number of network layers, M, can be determined based on the minimum axial
resolution delta z corresponding to the lateral scale range of the sample. As mentioned in section
4.3 that follows. As for the selection of hyperparameters for MSNN, The optimal hyperparameter
(Generally, the adjustment is the learning rate for LICC) can be obtained by monitoring the first
few iterations or performing a small number of iterative reconstructions in a localized area.

During the optimization process, the number of iterations is influenced by the sample and
the settings of MSNN , including numbers of layer, imaging depth, and the internal multiple
scattering of sample. Generally speaking, users can opt to halt once the loss shows no significant
reduction, achieving satisfactory imaging quality in such cases.

3. Simulations

To assess its capability for quantitative 3D RI reconstruction, we initially create a pure phase
phantom composed of microspheres of varying radius. These microspheres have a RI of 1.59,
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while the medium has an RI of 1.56. The ideal microspheres, with diameters ranging from 1 to 4
µm and an RI of 1.59, are immersed in a medium matching the RI of 1.56. The numerical aperture
(NA) of both the objective (Magnification 40X) and the illumination in the simulation is 0.7. We
sequentially illuminate angle-varied plane waves, with a center wavelength of 532 nm, through
the sample and generate 225 captured intensity images. Each image contains 100 × 100 pixels,
with a sensor pixel size of 4µm. Figure 2 shows the 3D imaging results of the microspheres,
with MSNN producing a satisfactory quantitative 3D RI. However, larger radius microspheres
demonstrate larger axial artifacts, attributable to the problem of low-frequency missing cones in
the frequency domain.

Fig. 2. The reconstruction results for 4 microspheres of varying sizes (a)This panel depicts
the 3D ground truth of the microspheres, with radius of 4µm, 3µm, 2µm and 1µm. (b)The
3D reconstuction results of the microspheres. (c)The reconstructions at depths of 1µm, 2µm,
3µm and 4µm in both the x-y and y-z planes.

Subsequently, we create a synthetic cell phantom containing intricate details for 3D RI recovery,
with an RI that ranges from 1.33 to 1.38. Figure 3 depicts the imaging results of the cell phantom
by MSNN, using 225 measurements. Even though it is subjected to the missing cone problem
and compromises axial resolution for low spatial frequencies, MSNN manages to reconstruct a
satisfactory quantitative 3D RI. Simulation was performed with PyTorch running on a desktop
computer equipped with Intel Core i5-10500 CPU at 4GHz 32GB RAM CPU and NVIDIA’s
GeForce GTX 3090 GPU. The total imaging time to complete 10 iterations for a volume of
100×100×100 voxels was 40 seconds.
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Fig. 3. The middle slice of x-y,x-z,y-z plane of the ground truth and imaging with MSNN.
And the 3D projection views in a tilt angle are present.

4. Quantitative verification

4.1. System setup

To demonstrate the improvement of MSNN, we use a two-slice test sample consisting of two
resolution targets, one placed above the focal plane and the other axially spaced apart and rotated
relative to the first one. We build a microscope system as shown in Fig. 1 with a 4x objective
(NA≈0.1). We use a LED array(15×15) for varied-angle illuminations, and the distance between
adjacent LEDs is 5mm. The LED array is located 100mm from the sample plane and emits
a light with a wavelength of 473nm and a bandwidth of 20nm. The LED array is controlled
by an stm32 microcontroller and is synchronized with the camera to scan through the LEDs at
camera-limited speeds. Our camera is capable of 50 frames per second at full frame (2448×2048
pixels, pixel size 3.45µm) and with 8-bit data. However, for dark-field images, we opt for longer
exposure times. The raw data, constrained to a small 360x360 pixel resolution region, is used to
recover a high-resolution complex field with a 4X increase in pixel quantity. The computing
platform is aligned with the simulation. The total imaging time to complete 50 iterations of a
720×720×2 voxels volume was 1 minutes.

4.2. Experiment results

The low-resolution raw images captured consist of 9 brightfield and 216 darkfield images. Since
the USAFchart serves as an intensity modulation sample, we employ a complex RI matrix to
represent the object. The imaginary parts of the complex RI sections, representing the absorption
of the light field at different depths within the sample, are shown in Fig. 4(d). MSNN successfully
isolates the intensity modulation information at various depths from the raw data.

However, without the LICC, MSNN fails to achieve the theoretical lateral resolution even after
500 optimization iterations, and the imaging quality across depth sections is unsatisfactory. The
compromised quality also suggests the presence of system deviations, such as pupil aberration,
illumination deviation, and exposure time differences [55–57].

When using the LICC, we manage to reconstruct the sample at an enhanced resolution in
as few as 50 iterations. With extended optimization, the lateral resolution improves steadily.
However, our experiments show that the optimal learning rate for LICC varies across training
iterations. As shown in Fig. 4(c), sudden drops in loss occur at marked positions within different
loss curves, resulting in a degradation of imaging. Therefore, it’s necessary to halt optimization
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Fig. 4. Absorption imaging of a two-slice sample consisting of two resolution targets
placed at different depths (-50 and 50 µm), with one rotated laterally with respect to the
other. (a)Low-resolution full FoV image from 4× 0.1NA objective. (b)The imaging for
5-3(12.41µm) and 4-3(24.80µm) in two slice. (c)The loss curve for different learning rates
of light calibration. The overfittings during the optimization are labeled, and the training
should be stopped before the overfitting. (d)The captured raw data and the reconstructed
results with different learning rates of LICC

early by observing the loss trend. The early stop point loss within the different curves further
supports the notion that LICC improves imaging quality.

4.3. Analysis of resolution

4.3.1. Formulation of Ewald sphere

The three-dimensional Fourier diffraction theorem suggests the lateral resolution and axial
resolution in the intensity diffractive tomography (IDT) system are not independent, but the
structures in the biomedical sample with large lateral size usually have a large axial size, we
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usually ignored studying the relationship between the axial resolution and lateral resolution in
our experiment system.

To analyze both lateral resolution and axial resolution theoretically, we use the three dimensional
(3D) coherent transfer function (CTF) of the imaging system. As illustrated in Fig. 5(a), the 3D
spatial frequency(k-space) is formed by the 3D Fourier transform of the object’s RI [58,59]. This
spherical k-space representation, known as the Ewald sphere, has a radius determined by the
wave vector k0 =

2π
λ .

Fig. 5. Fourier diffraction theorem in finite-aperture optical systems. (a)The 3D sample is
illuminated by plane waves from various angles. The forward scattering wave captured by
the aperture of the objective with fixed NA. (b1)The bandpass on the Ewald sphere and the
axial bandwidth in different lateral resolutions by the sparse illumination of (a). (b2)The
bandpass on the Ewald sphere and the axial bandwidth in different lateral resolutions by the
dense illumination

By sequentially activating each light-emitting-diode(LED) at different positions on the LED
array, which in turn provides plane waves ki at varying angles, we can explore different regions
of the k-space. As ki changes with the illumination angle, the maximum probed k-space falls
within a spherical shell with radius k0. The center of this shell shifts along a second spherical
shell(of the same radius k0) determined by the incident angle of the plane wave ki (as depicted by
the gray circle in Fig. 5(a)).

However, in actual experiment systems, The Fourier diffraction theorem suggests that, limited
by illumination and microscopy, only partial spherical cap bounded by the generalized aperture
can be probed. Illuminating the object at different angles will shift different regions of the object’s
k-space into a fixed microscope objective lens with fixed numerical aperture (NA). Ultimately,
only a portion of the Ewald sphere can be reconstructed. [17,20].

We employ matrices to digitally simulate the 3D CTF based on our system setup. The 3D
k-space bandwidth in the x-z section(which is equivalent to the bandwidth in the y-z section) is
depicted in Fig. 5(b). From this, we can compute the theoretical axial resolution by assessing
the k-space bandwidth of the x-z region. The results suggest that different lateral resolutions
correspond to varying axial resolutions. This implies that the imaging quality for line pairs on a
USAF chart will differ across the depth(z) section due to these resolution disparities.
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4.3.2. Analysis of axial resolution for the system of quantitative experiment

The LED array provides various illumination angles to improve the lateral resolution [60,61].
As expected, the lateral bandwidth ∆fx is determined by the sum of objective NA(NAobj) and
illuminate NA(NAillu):

∆fx =
2(NAobj + NAillu)

λ
(15)

According to Eq. (15), The theoretical lateral resolution is 0.821 µm, indicating that the clearest
line pair on the USAF chart would be between 9-2 and 9-3. The axial resolution, however, does
not follow this trend. Its bandwidth, ∆fx, is neither that of the objective nor is it that would result
from using an objective having the sum of the two NA. Instead, it is somewhere in between
the NA of the objective and the sum of two NAs (NAobjandNAillu), and can be estimated with a
formula:

∆fz =
2 −

√︂
1 − NA2

obj −
√︂

1 − NA2
illu

λ
(16)

Nonetheless, the calculated result using this formula represents the maximum axial resolution
achievable across various lateral resolutions. The 3D Fourier diffraction theorem [62] suggests
the lateral resolution and axial resolution in the Fourier Ptychography system for RI tomography
are not independent [63]. We propose a digital simulation method for more accurate analysis of
axial resolution in microscopy systems. In the USAFchart illuminated by our system, the 5-3
line has 44µm theoretical maximum axial resolution, and the 4-3 line pair has 70µm theoretical
maximum axial resolution. In the green ROI of Fig. 4, the information regarding the separation
of the 4-3 line pairs at an axial distance of 100µm is distinct in different depth sections. In order
to further analyze the difference between the axial resolution of our system and the theoretical
limit, we narrowed the distance of USAFchart for further experiments.

Since the lines with the different lateral sizes in USAFchart have the same axial size, the stacked
resolution targets provide a convenient way to experimentally characterize lateral resolution at
multiple depths. At the same time, we can transform the various linewidth which represents
various lateral resolutions into the spectrum and view the reconstruction of depth(z) section to
analyze the axial resolutions.

According to the axial bandwidth in Fig. 5(b1) which uses sparse illumination, the maximum
axial resolution is 9.6µm in 1.9µm lateral resolution (8-1 line pair). The 5-3 line pair with
12.41µm in Fig. 5(b) has 57µm axial resolution, the 4-3 line pair with 24.8µm in Fig. 5(b) has
97µm axial resolution. In dense illumination, the maximum axial resolution is 9.3µm in 2µm
lateral resolution. The 5-3 line has 44µm axial resolution, and the 4-3 line pair has 70µm axial
resolution. The difference between axial resolutions in low-resolution lines is mainly caused by
numerical simulation errors(The numerical error can be reduced by expanding the matrix scale),
but the analysis still can be used as a reference. The actual axial resolution should lie between
the above two sets of data, taking into account the density of the illumination.

To confirm whether the axial resolution of a 4-3 or 5-3 pair aligns with the theoretical analysis
value, we present the reconstruction results of a pair of USAF charts, reconstructed by MSNN,
with a placement spacing of 54 µm. As observed in Fig. 6, ROI① with smaller lateral sizes
demonstrate better layering compared to ROI② and ROI③, which have larger lateral sizes. And
due to the axial bandwidth not being symmetrical, ROI② and ROI③, which have the same lateral
size, also exhibit different layering effects in planes at varying depths.
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Fig. 6. Absorption reconstruction of a two-slice sample consisting of two resolution targets
placed at different depths (-27 and 27 µm), with one rotated laterally with respect to the
other.

5. Experimental of biological sample

5.1. System setup

The raw data of C.elegan were obtained from Laura Waller’s Computational Imaging Lab at
UC Berkeley [44,64]. Since the diameter of C.elegans usually does not exceed 30µm, high-NA
microscope objectives are used for high axial resolution. Consequently, all acquired images
are brightfield images, and the raw data were applied HDR combined to calibrate the intensity
between different illumination. Therefore, we do not use LICC for adaptive intensity calibration.
Simultaneously, we divide the imaging depth of 24µm or 30µm into 121 layers, where the impact
of backscattering becomes more pronounced. So we employ LIAC to estimate the attenuation of
the forward propagation field caused by backscattering. The computing platform is aligned with
the simulation. We employed PyTorch’s mixed-precision training specifically for the C.elegans
data. The total imaging time to complete 50 iterations of a 1200×1200×121 voxels volume was
1.8 hours.

5.2. Experiment results

The captured raw data includes 120 images with illumination angles scanned on a spiral trajectory.
Our biological experiment generates a high-resolution RI tomography of an adult C.elegans
worm’s head region(1200×1200×60 voxels), with voxel size 0.12×0.12×0.5 µm3.We note that
8-20 iterations are sufficient for visualizing the C.elegan’s 3D tomographic structure, taking 18-45
minutes(Visualization 1). MSNN can balance the time required with the quality of 3D imaging.
Additionally, as we can utilize various propagation models by substituting the connections within
the layers in MSNN, we also conducted experiments for applying the multi-layer Born model
[53] in MSNN framework.

To quantitatively visualize the worm’s 3D biological RI, we present RBG-colored cross-
sectional images of all ROIs at various axial and lateral positions. In Fig. 7(a1)-(a3), we show
two lateral slices through reconstruction volume at the axial position of z=−7, −0.5, +5µm. The
digestive system including the mouth, pharynx, and pharyngeal lumen, are identified. Behind the
pharynx, we can observe the nematode’s intestinal lumen, which contains many microsphere-like
details. Fig. 7(a6) and (a7) show the axial cross-section of the pharyngeal lumen and pharynx,
respectively. In Fig. 7(b1)-(b4), the lateral slice clearly show the pharyngeal lumen, pharynx,
and other micron-sized structure at different axial position. We can also see the phenomenon

https://doi.org/10.6084/m9.figshare.24031776
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of C.elegan feeding in Fig. 7(c1)-(c4). The microspheres in front of the mouth of C.elegan are
E.coli bacteria, a food source for the worm(3D RI Tomography results in Visualization 2).

Fig. 7. RI tomography of a C.elegan worm’s head. (a1)-(a3) Lateral slices through the
3D imaging volume at various axial positions. Major components of the digestive system
are labeled. (a4)-(a5)The captured raw data illuminate by the positive incidence. Axial
slice through the pharynx (a6), and axial slice through the pharyngeal lumen (a7) are shown.
(b1)-(b4),(c1)-(c4) Lateral slices of the ROIs ① and ② in grayscale or RGB color at different
axial positions. (b5)-(b8), (c5)-(c8) A comparison of experimental results with and without
the implementation of LIAC. (d1)-(d2), (e1)-(e2) 3D reconstructions of the ROIs ① and ②

from various viewing angles.

Due to the multi scattering effect inside C.elegans, backscattering at such long axial distances is
still not negligible, so we conducted comparative experiments with and without LIAC. The results
are shown in Fig. 7(b5)-(b8) and (c5)-(c8). As observed, the results with LIAC demonstrate
enhanced clarity and higher contrast. During optimization, the implementation of LIAC also
resulted in a smaller L1 loss compared to raw data.

Figure 7(d1)-(d2) and Fig. 7(e1)-(e2) show 3D visualizations from various viewing an-
gles. To emphasize the 3D structure, we have obscured parts with an RI of less than 1.33.
Usually, visualizing this morphology requires cross-sectional slicing and viewing by electron
microscopy. We demonstrate that we can achieve non-invasive imaging to obtain 3D microscopic
structures(Visualization 3).

https://doi.org/10.6084/m9.figshare.24031779
https://doi.org/10.6084/m9.figshare.24031782
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5.3. Validating the effectiveness of learnable intensity attenuation coefficients

To make the beam propagation model more closely resemble the actual propagation of the light
field, we employ LIAC to predict the intensity of the backscattering field and attenuate the
forward scattering fields, thereby enhancing the RI image quality. To analyze the impact of LIAC
on the RI image quality for samples, we used MSNN to optimize 200 iterations without applying
TV regularization. The total imaging time to complete 200 iterations of a 420×420×60 voxels
volume(The mouth of C.elegan) was 30 minutes. And the imaging results are shown in Fig. 8.

Fig. 8. Imaging results without TV regularization. (a1)-(a3)Lateral slices through the
3D reconstruction volume without the implementation of LIAC at various axial positions.
(b1)-(b3)Lateral slices through the 3D reconstruction volume with the implementation of
LIAC at various axial positions. (c)Loss curve of the optimizations

As observed, the loss curves indicate that the imaging results incorporating LIAC for predicted
intensity align more closely with the captured raw data in the majority of iterations. Furthermore,
the LIAC-enhanced results exhibit high-frequency noise which can be eliminated by many
effective method, and we think that the high-frequency noise is caused by higher-order scattering
fields. Imaging results without LIAC show more speckle-like noise, which would be difficult to
remove, and we have a hypothesis that this noise is caused by not considering low-order scattering
such as backscattering [65,66].
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Fig. 9. The comparison of experimental results of a C.elegan worm’s head with different
methods. (a1)-(a4)Lateral slices through the sample imaging by neural network using
multi-layer Born propagation model (MLB-NN). (b1)-(b4)Lateral slices through the sample
imaging by the MSNN with LIAC. (c1-c4)Lateral slices through the sample imaging by the
MSNN without LIAC. (d)Loss curves of the optimizations
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5.4. Comparison of total field-of-view imaging with total variation regularization

Considering the challenge of separating information and noise in the reconstructed image without
regularization, we present the total field-of-view reconstructed image using TV regularization
with or without LIAC. Furthermore, the MSNN allows for the easy exchange of field-propagation
models by defining the connections between layers. We also employ the multi-layer Born model
within the Deep Neural Network(MLB-NN) for imaging the sample [53], as described in the
methodology chapter of the text.

As shown in Fig. 9, the imaging utilizing MLB-NN shows a similar RI distribution to MSNN,
albeit with lower contrast, and the loss converges at a slower pace. With the same level of
TV regularization applied, the reconstructed image using MSNN with LIAC exhibits a quicker
convergence speed and superior image granularity in the lateral slices and axial slices, which
may reveal more details(labeled in Fig. 9) in the tomography.

6. Discussion and conclusion

An untrained physical based network termed as MSNN is proposed and demonstrated in this
paper. It is an implementation of the paradigm of remodeling neural networks with optical
principles. The scalability of MSNN provides a way to solve the constraints for RI tomography.

To enhance the clarity of RI tomography, darkfield images information is also very important.
The implement of LICC can effectively calibrate the intensity between brightfield and darkfield,
further, LICC can calibrate the intensity between different positions when using various LEDs(light
sources) as illumination, the application of LICC has the ability to reduce hardware requirements
and the need for preprocessing of raw data in RI tomography.

Furthermore, due to the complexity of multiple scattering, RI tomography is often limited
to imaging samples with weak backscatter under the 1st Born or Rytov approximation. In
the future, replacing the backscatter intensity estimation LIAC with a more accurate optical
model may enable MSNN to account for higher-order scattering processes, showing promise in
reconstructing samples with a broader RI range or extended axial distances.

In this paper, we have introduced MSNN, a neural network for efficient and accurate RI
tomography. Compared to the widely used conventional deep learning methods, MSNN
reconfigures the conventional CNN with the physical beam propagation model to confirm the
authenticity of the 3D RI information. Moreover, it accelerates RI tomography compared to
CNNs that employ physical method verification. MSNN introduces a novel paradigm for RI
tomography, enabling to image biological samples(C.elegans) that are both thicker and exhibit
higher scattering properties than were achievable with earlier methods. The implementation of
LICC and LIAC also improved the robustness and imaging clarity and present its scalability.
Funding. National Natural Science Foundation of China (62275020).
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